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Synchronization of coupled
space-clamped fitzhugh-nagumo

neurons via an adaptive integral type
of terminal sliding mode control

Hong-Yi Chen2, Hui-Cun Shen3, 6, Kun-Chieh

Wang3, Si-Hon Kao4, Chi-Ching Yang5

Abstract. In this study, an integral type of terminal sliding mode is introduced to develop the

robust adaptive control scheme for achieving the state synchronization between two coupled space-

clamped FitzHugh-Nagumo neurons with gap junctions and external electrical stimulation by taking

account of the external disturbances. Su�cient conditions to guarantee the stable synchronization

are given and the proof of theorem is made in the sense of the Lyapunov stability. In addition,

numerical simulations are also performed to verify the e�ectiveness of presented scheme.

Key words. FN neuron, state synchronization, adaptive control.

1. Introduction

External electrical stimulation (EES) is a therapy for cognitive disorders such as
Parkinson's disease, epilepsy and dystonia [1]. Investigation of neuronal synchro-
nization has become one of the widely researched problems in the �eld of neuro
science [2-4]. It has attracted many brain researchers over the past decade in or-
der to understand the underlying mechanism of external stimulation and hence to
improve the stimulation therapy based treatments for cognitive diseases.
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Neuron is the fundamental element of every nervous system. Dynamic behavior
of neuron is widely studied to �nd the mechanism of neuronal spiking for e�ective
neurotransmission and brain signal proceeing. In the �eld of neuroscience, chaotic
phenomenon and other complex behavior of neurons such as bifurcation, periodic,
and quasi-periodic were studied based on the various nerve modes, such as, Hodglein-
Huxley (HH) neuron model [5], FitzHugh-Nagumo (FN) neuron model [6, 7], and
Hindmarsh-Rose model [8]. Due to the simplicity, space-clamped FN neuron model
[9], which being the cable model of cylindrical cell, is one simpli�ed model of the HH
neuron model to describe the neuron dynamics and utilized to study neural �rings.

Without control, identical coupled neurons can eventually synchronize only when
the coupling strength is above a certain critical value [10, 11], which may be beyond
the physiological condition. In biological experiments, the synchronization of two
coupled neurons can be achieved when depolarized by an external DC current. Mo-
tivated by [10], synchronization of chaotic neurons under EES is attracted many
interests during the past decades.

For two coupled space-clamped FN neurons with EES, various control schemes
have been successfully applied to control and synchronization. In [9], the LMI-
based robust adaptive synchronized scheme was introduced. In [11], the dynamic
synchronization of two coupled space-clamped FN neurons with gap junctions was
addressed and the robust performance was ensured against bounded disturbances.
In [10], a robust adaptive sliding-mode controller instead of the active elimination
of nonlinear dynamics was proposed to achieve the chaotic synchronized problem in
the presence of system uncertainty and external disturbances between two uncoupled
FN neurons with di�erent ionic currents and ESS.

Motivated by [10], by taking account the external disturbances, a novel adaptive
integral type of terminal sliding mode control for synchronization of two coupled
space-clamped FN neurons with sinusoidal ESS is developed in this study. The
developed controller, which can achieve the state synchronization of two coupled
FN neurons, associated with time varying feedback gains can not only tackle the
external disturbances but also compensate for the mismatch nonlinear dynamics of
synchronized error system without direct cancellation of nonlinear terms. Mean-
while, according to the novel integral type of adaptive terminal sliding mode, these
feedback gains are not determined in advance but updated by the adaptive rules.
Su�cient conditions to guarantee the stable synchronization are given in the sense
of the Lyapunov stability. In addition, numerical simulations are also performed to
verify the e�ectiveness of presented scheme.

The rest of this study is organized as follows. The formulation of problem for
state synchronization between two coupled FN neurons and the design of adaptive
controller are demonstrated in Section 2 and 3, respectively. In Section 4, numerical
simulations are performed to show the e�ectiveness of the proposed controller. In
the �nal section, some concluding remarks are made.
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2. Formulation of the problem for state synchronization

The general form of two coupled space-clamped FN neuron subject to EES under
external disturbances is described by the following second-order non-autonomous
di�erential equations :

Master FN neuron :

 ẋ1 = x1(x1 − 1)(1− αx1)− x2 + δ(x1 − y1) + f cos(ω t)
+dm(t)

ẋ2 = βx1 − γx2

Slave FN neuron :

 ẏ1 = y1(y1 − 1)(1− αy1)− y2 + δ(y1 − x1) + f cos(ω t)
+ds(t) + φ(t)

ẏ2 = βy1 − γy2
(1)

where x1, x2 and y1, y2 are the normalized state variables of the master and
slave systems, respectively. The parameter δ represents the strength gap junction
between the master and slave FN neurons, and f cos(ωt) represents the EES current
with angular frequency ω at time t . dm(t), ds(t) are the external disturbance,
and φ(t) is the control to be determined. In general, the external disturbances
dm(t), ds(t) are assumed to be bounded as follows:

0 ≤ |dm(t)| ≤ D1, 0 ≤ |ds(t)| ≤ D2, ∀t (2)
whereD1 andD2 are positive constants. System parameters of the coupled model

in (1) are set to
α = 10, β = 1, γ = 0.1, δ = 0.01, ω = 0.28π, f = 5/ (14π) (3)
Figures 1 and 2 shows the behaviors of two coupled chaotic space-clamped FN

neurons with the initial conditions (x1(0), x2(0)) = (−0.1, −0.1), (y1(0), y2(0)) =
(0.3, 0.3) .

Fig. 1. State trajectory of master neuron

To proceed, the synchronized error states between systems in (1) are de�ned as
e1(t) = x1(t)− y1(t), e2(t) = x2(t)− y2(t). (4)
Taking the time derivative of (4), the synchronized error system can be expressed

in the following{
ė1 = [−αf1(x1, x2) + f2(x1, x2)− (1 + 2δ)]e1 − e2 + dm(t)− ds(t) + φ(t)
ė2 = βe1 − γe2

(5)

where the functions f1(x1, x2) = x21 +x1x2 +x22 and f2(x1, x2) = (1+α)(x1 +x2)
are nonlinear functions represented the mismatch dynamics and bounded because
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Fig. 2. State trajectory of slave neuron

of the bounded phase trajectories of x1(t), x2(t). To this end, it is clear that the
problem of state synchronization is replaced by the equivalent of stabilizing the
synchronized error system (5) by utilizing an appropriate control input φ(t) . The
goal of the current problem is to design the control φ(t) such that lim

t→∞
e1(t) → 0

and lim
t→∞

e2(t)→ 0 for any initial conditions of the synchronized error system (5). It

means that the state behaviors of the slave neuron can tend to ones of the master
neuron.

3. Design of Adaptive Integral Type of Terminal Sliding
Mode Control

The design approach of robust adaptive sliding mode controller involves two
steps. (1) The appropriate sliding surface for desired sliding motion is selected. In
the sliding surface, the slave neuron will be synchronous with the master neuron.
(2) The robust controller φ(t) is designed that brings any trajectory in phase space
of the error dynamics to and stay in the sliding surface even in the events of external
disturbances dm(t), ds(t) .

The novel integral type of terminal sliding mode surface is de�ned as follows.

σ(t) = 1
λ

[
e2(t) + γ

∫ t
τ=0

e2(τ)dτ
]

+ [e1(t)]
p
q (6)

where λ > 0, 1 < p/q < 2 , p and q are positive odd integrals. For the existence
of the sliding mode, it is necessary and su�cient that σ(t) = 0 and σ̇(t) = 0 .
Therefore, the sliding mode dynamics are determined by the following nonlinear
di�erential equation:

σ̇(t) = 0⇒ 1
λ [ė2(t) + γe2(t)] + p

q [e1(t)]
p
q−1 ė1(t) = 0 (7)

The �nite time Ts , which is taken to travel from e1(Tr) 6= 0 to e1(Tr + Ts) = 0 ,
is given by

Ts = λp
β(p−q) [e1(0)]

p
q−1 (8)

where Tr is the time of synchronized error state trajectory reaching to the sliding
surface σ(t) = 0 . In the following, the control φ(t) of system (5) for achieving the
state synchronization is proposed.
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Theorem. If the control law φ(t) in system (5) is taken as follows:

φ(t) = −βqλp [e1(t)]
2−(p/q)

+e2(t)−[K0(t) +K1(t) |e1(t)|+K2(t) |σ(t)|a]·sgn(σ(t))

(9)
where σ(t) is the sliding surface de�ned in (6), 0 < a < 1 is positive design

constant and sgn(•) denotes the sign function. K0(t), K1(t) and K2(t) are the
adaptive feedback gains updated, respectively, according to the following adaptation
algorithms:

K̇0(t) = ρ0 |σ(t)| |e1(t)|(p/q)−1 , K0(0) = 0, ρ0 > 0 (10)

K̇1(t) = ρ1 |σ(t)| |e1(t)|(p/q) , K1(0) = 0, ρ1 > 0 (11)

K̇2(t) = ρ2 |σ(t)|a+1 |e1(t)|(p/q)−1 , K2(0) = 0, ρ2 > 0 (12)
where ρ0, ρ1, ρ2 are the positive adaptation gains determining the adaptation

process. Then, states of the synchronized error system (5) will asymptotically ap-
proach to and stay in the sliding surface σ(t) = 0 .

Proof. The Lyapunov function candidate of the problem is chosen as
V (t) = 1

2σ
2(t) + p

2q

∑2
i=0

1
ρi

(Ki(t)− K̄i)
2 (13)

where K̄0, K̄1, K̄2 are positive constants and satis�ed
K̄0 > D1 +D2, K̄1 > 1 + 2δ + α |f1|+ |f2| > 0, K̄2 > 0 (14)
Taking the time derivative of (13) along with the solutions of the synchronized

error system (5), the selection of the sliding mode surface (6), and the controller (9),
it yields

V̇ = σσ̇ + p
q

∑2
i=0

1
ρi

(Ki(t)− K̄i)K̇i (15)

where G = −[K̄1−D1−D2] |σ|− [K̄1− (1+2δ+α |f1|+ |f2|)] |e1| |σ|− K̄2 |σ|a+1

. From (15), since V (t) is a positive de�nite and decreasing function, it follows
that the zero equilibrium point ( σ = 0, K0 = K̄0, K1 = K̄1, K2 = K̄2 ) would
be asymptotically stable. It means the states of the synchronized error system (5)
will asymptotically approach to and stay in the sliding surface σ(t) = 0 . Once the
sliding surface is reached, the time taken to arrive at the equivalent point e1(t) = 0
in the sliding surface is de�ned in (8). It follows that both the synchronous error
states will ultimately tend to zeros. As the control design meets the requirements
depicted in this theorem, the state synchronization between systems (1) is achieved.
This completes the proof.

4. Numerical simulations

In the section, the numerical studies are performed to verify e�ectiveness of
the proposed adaptive terminal sliding mode controller. Using the fourth-order
Runge-Kutta method with the initial conditions (x1(0), x2(0)) = (−0.1, −0.1),
(y1(0), y2(0)) = (0.3, 0.3) and system parameters given in Fig. 1 to ensure the
chaotic dynamics of the state variables, the synchronized error system (5) with the
controller de�ned in (9) is numerically solved. The external disturbances are assumed
to be dm = 0.015 sin(3.5t), dm = 0.06in(3t) , respectively.

For the robust adaptive sliding mode controller described in (9) associated with
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(10) and (12), the positive design constants are chosen as p = 9, q = 7 , λ = 0.1
, a = 1/2 , ρ0 = 0.75, ρ1 = 1.0 , and ρ2 = 1.25 In Figure 3, it is shown that the
synchronized error states oscillate irregularly when the controller is switched o�, and
when the controller is in action at t = 80 , both of the synchronized error states
converge to zero and the synchronization is achieved. Time responses of the sliding
mode, the control signal, and the adaptive feedback gains are depicted in Figures 4
and 5, respectively. It can be seen that the control signal is continuous and chattering
free. In Figure 6, time responses of states for coupled space-clamped FN neurons are
illustrated. It depicates that the state synchronization is accomplished between the
master and slave FN neurons by applying the develpoed adaptive control scheme.

Fig. 3. Time responses of error states

Fig. 4. Time responses of σ(t), φ(t)

5. Conclusions

In this study, by de�ning an integral type of terminal sliding mode, a robust
adaptive control law has bee addressed to achieve the state synchronization between
two coupled space-clamped FN neurons with gap junctions and external electrical
stimulation in the present of external disturbances. Su�cient conditions to guarantee
the stability are given based on the Lyapunov stability theorem. Besidies, numerical
simulations are also performed to verify the e�ectiveness of presented scheme. It is
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Fig. 5. Time responses of feedback gains

Fig. 6. Time responses of states for master and slave FN neurons

shown that the state synchronization between the master and slave FN neurons is
achieved by utlilizing the proposed adaptive integral type of terminal sliding mode
control scheme.
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